Arkitekt: streaming analysis and real-time workflows for microscopy
Mahecic, D. et al. Event-driven acquisition for content-enriched microscopy. Nat. Methods 19, 1262–1267 (2022).
Google Scholar
Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 16, 1215–1225 (2019).
Google Scholar
Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).
Google Scholar
Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using MicroManager. Curr. Protoc. Mol. Biol. 14, 14.20 (2010).
Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).
Google Scholar
Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
Sofroniew, N. et al. Napari: a multi-dimensional image viewer for Python. Zenodo (2022).
Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).
Google Scholar
Sheffield, N. C. et al. From biomedical cloud platforms to microservices: next steps in FAIR data and analysis. Sci. Data 9, 553 (2022).
Google Scholar
Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).
Google Scholar
Galaxy, C. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).
Google Scholar
Prigent, S. et al. BioImageIT: open-source framework for integration of image data management with analysis. Nat. Methods 19, 1328–1330 (2022).
Google Scholar
Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. & Zimmer, C. ImJoy: an open-source computational platform for the deep learning era. Nat. Methods 16, 1199–1200 (2019).
Google Scholar
Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. Event-triggered STED imaging. Nat. Methods 19, 1268–1275 (2022).
Google Scholar
Beghin, A. et al. Localization-based super-resolution imaging meets high-content screening. Nat. Methods 14, 1184–1190 (2017).
Google Scholar
Gerst, R., Cseresnyes, Z. & Figge, M. T. JIPipe: visual batch processing for ImageJ. Nat. Methods 20, 168–169 (2023).
Google Scholar
Casas Moreno, X., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I. ImSwitch: generalizing microscope control in Python. J. Open Source Softw. (2021).
Moore, J. et al. OME-NGFF: a next-generation file format for expanding bioimaging data-access strategies. Nat. Methods 18, 1496–1498 (2021).
Google Scholar
Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).
Google Scholar
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).
Google Scholar
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. AnchorCell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention MICCAI 265–273 (2018).
Besson, S. et al. Bringing open data to whole slide imaging. Digit Pathol. 2019, 3–10 (2019).
Google Scholar
Galland, R. et al. 3D high- and super-resolution imaging using single-objective SPIM. Nat. Methods 12, 641–644 (2015).
Google Scholar
Beghin, A. et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat. Methods 19, 881–892 (2022).
Google Scholar
von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).
Google Scholar
Ester, M., Kriegel, H., Sander, J. & Xu, X. Proc. 2nd International Conference on Knowledge Discovery and Data Mining 226–231 (1996).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Google Scholar
Lopes, G. et al. Bonsai: an event-based framework for processing and controlling data streams. Front. Neuroinform. 9, 7 (2015).
Google Scholar
Saunders, J. L. & Wehr, M. Mice can learn phonetic categories. J. Acoust. Soc. Am. 145, 1168 (2019).
Google Scholar
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
Google Scholar
Carpenter, A. E., Cimini, B. A. & Eliceiri, K. W. Smart microscopes of the future. Nat. Methods 20, 962–964 (2023).
Google Scholar
Roos, J. Workflow I – Interactive analysis – Three analysed ROIS. Zenodo (2023).
Roos, J. Workflow II – Streaming analysis – Multi-position, multi timepoint acquisition. Zenodo (2023).
Roos, J. Workflow III – Smart Microscopy – Adaptive monitoring of cell clusters. Zenodo (2023).
link